特点

■ 国际标准封装，芯片与底板电气绝缘耐压 3000 V
■ 采用进口玻璃钝化芯片焊接式结构，优良的温度特性和功率循环能力
－ 350 A 以下模块皆为强迫风冷， 400 A 以上模块，风冷，水冷选用

典型应用

■ 交直流电机控制，各种稳压电源，UPS电源
■ 工业加热控制，调光，无触点电子开关

IT（AV）		160 A
VDRM／VRRM	$600-2400 \mathrm{~V}$	
ITSM	3.8	KA
$I^{2} \mathrm{t}$	146	$10^{3} \mathrm{a}^{2} \mathrm{~s}$

- 电机软起动，无功补偿
- 变频器，充电机，电池充放电

符号	参数	测试条件	$\begin{gathered} \text { 结温 } \\ \operatorname{TJ}\left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	参数值			单位
				最小	典型	最大	
IT（AV）	通态平均电流	80° 正弦半波， 50 HZ 单面散热， $\mathrm{TC}=80^{\circ} \mathrm{C}$	125		160	162	A
IT （RMS）	方均根电流		125			251	A
VDRM VRRM	断态重复峰值电压反向重复峰值电压	VDRM\＆VRRMtp＝10ms VDSM\＆VRSM＝VDRM\＆VRRM＋200V	125		1600		V
IDRM IRRM	断态重复峰值电流反向重复峰值电流	VDM＝VDRM VRM＝VRRM	125			20	mA
ITSM	通态不重复浪涌电流	10 ms 底宽，正弦半波	125			3.80	KA
$\mathrm{I}^{2} \mathrm{t}$	浪涌电流平方时间积	$\mathrm{VR}=0.6 \mathrm{VRRM}$	125			146	$\mathrm{A}^{2 \mathrm{~S} * 10^{3}}$
Vто	门槛电压		125			0.8	V
rT	斜率电阻		125			1.69	$\mathrm{m} \Omega$
Vtm	通态峰值电压	ImT＝480A	25			1.25	V
dv／dt	断态电压临界上升率	VDM $=0.67 \mathrm{VDRM}$	125			800	V／us
di／dt	通态电流临界上升率	$\mathrm{ImT}=480 \mathrm{~A}$ 门极触发电流幅值IGR＝1．5A 门极电流上阩时间 $\mathrm{tr} \leq 0.5 \mathrm{US}$	125			100	A／us
IGT	门极触发电流			30		150	mA
VGT	门极触发电压	$\mathrm{VA}=12 \mathrm{~V}, \mathrm{IA}=1 \mathrm{~A}$	25	1.0		2.5	V
IH	维持电流			20		150	mA
VGD	门极不触发电压	VDM＝0．67VDRM	125	0.2			V
Rth（j－c）	热阻抗（结至壳）	180° 正弦波，单面散热				0.16	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{Rth}(\mathrm{c}-\mathrm{h})$	热阻抗（壳至散）	180° 正弦波，单面散热				0.08	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Viso	绝缘电压				3000		V
FM	安装扭矩（M5）				3		$\mathrm{N}-\mathrm{m}$
	安装扭矩（M6）				4		$\mathrm{N}-\mathrm{m}$
Tstq	储存温度			－40		125	${ }^{\circ} \mathrm{C}$
W_{t}	质量						g
Outline	外 形	$92 \times 36 \mathrm{~mm}$					

Fig． 1 通态伏安特性曲线

Fig． 3 最大功耗与平均电流关系曲线

Fig． 5 最大功耗与平均电流关系曲线

Fig． 2 结至管壳瞬态热阻抗曲线
Max．case Temperature Vs．Mean On－state Current

Fig． 4 管壳温度与通态平均电流关系曲线

Fig． 6 管壳温度与通态平均电流关系曲线

Fig． 7 通态浪涌电流与周波数的关系曲线
Gate characteristic at $25^{\circ} \mathrm{C}$ junction temperature

Fig． 9 门极触发特性曲线

外形图：

$1^{2 t}$ Vs．Time

Fig． $8 I^{2} t$ 特性曲线
Gate Trigger Area at various temperature

Fig． 10 不同结温下的门极触发区

线路图：

MTC

特点

■ 国际标准封装，芯片与底板电气绝缘耐压 3000 V
■ 采用进口玻璃钝化芯片焊接式结构，优良的温度特性和功率循环能力
－ 350 A 以下模块皆为强迫风冷， 400 A 以上模块，风冷，水冷选用

典型应用

■ 交直流电机控制，各种稳压电源，UPS电源
■ 工业加热控制，调光，无触点电子开关

IT（AV）	200 A	
VDRM／VRRM	$600-2400 \mathrm{~V}$	
ITSM	5.4	KA
I $^{2} \mathrm{t}$	259	$10^{3} \mathrm{a}^{2} \mathrm{~s}$

- 电机软起动，无功补偿
- 变频器，充电机，电池充放电

符号	参数	测试条件	$\begin{gathered} \text { 结温 } \\ \operatorname{TJ}\left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	参数值			单位
				最小	典型	最大	
IT（AV）	通态平均电流	80° 正弦半波， 50 HZ 单面散热， $\mathrm{TC}=80^{\circ} \mathrm{C}$	125		200	220	A
IT （RMS）	方均根电流		125			314	A
VDRM VRRM	断态重复峰值电压反向重复峰值电压	VDRM\＆VRRMtp＝10ms VDSM\＆VRSM＝VDRM\＆VRRM＋200V	125		1600		V
IDRM IRRM	断态重复峰值电流反向重复峰值电流	VDM＝VDRM VRM＝VRRM	125			25	mA
ITSM	通态不重复浪涌电流	10 ms 底宽，正弦半波	125			5.40	KA
$\mathrm{I}^{2} \mathrm{t}$	浪涌电流平方时间积	$\mathrm{VR}=0.6 \mathrm{VRRM}$	125			259	$\mathrm{A}^{2 \mathrm{~S} * 10^{3}}$
Vто	门槛电压		12			0.8	V
rT	斜率电阻		125			1.27	$\mathrm{m} \Omega$
Vtm	通态峰值电压	$\mathrm{ImT}=600 \mathrm{~A}$	25			1.20	V
dv／dt	断态电压临界上升率	VDM $=0.67 \mathrm{VDRM}$	125			800	V／us
di／dt	通态电流临界上升率	$\mathrm{ImT}=600 \mathrm{~A}$ 门极触发电流幅值IGR＝1．5A 门极电流上 \leq 升时间 $\mathrm{tr} \leq 0.5 \mathrm{US}$	125			100	A／us
IGT	门极触发电流			30		180	mA
VGT	门极触发电压	$\mathrm{VA}=12 \mathrm{~V}, \mathrm{IA}=1 \mathrm{~A}$	25	1.0		2.5	V
IH	维持电流			20		150	mA
VGD	门极不触发电压	VDM＝0．67VDRM	125	0.2			V
Rth（j－c）	热阻抗（结至壳）	180° 正弦波，单面散热				0.140	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{Rth}(\mathrm{c}-\mathrm{h})$	热阻抗（壳至散）	180° 正弦波，单面散热				0.04	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Viso	绝缘电压				3000		V
FM	安装扭矩（M5）				3		$\mathrm{N}-\mathrm{m}$
	安装扭矩（M6）				4		$\mathrm{N}-\mathrm{m}$
Tstq	储存温度			－40		125	${ }^{\circ} \mathrm{C}$
W_{t}	质量						g
Outline	外 形	$92 \times 36 \mathrm{~mm}$					

