特点

－国际标准封装，芯片与底板电气绝缘耐压 3000 V
■ 采用进口玻璃钝化芯片焊接式结构，优良的温度特性和功率循环能力
－350A以下模块皆为强迫风冷，400A以上模块，风冷，水冷选用

典型应用

- 直流电源，各种稳压电源
- 工业加热控制

IT（AV）		95 A
VDRM／VRRM	600	-2400 V
ItSM	2.3	KA
$\mathrm{I}^{2}{ }_{\mathrm{t}}$	26.9	$10^{3} \mathrm{a}^{2} \mathrm{~s}$

- 电机软起动，整流电源
- 变频器，充电机，电池充放电

符号	参数	测试条件	$\begin{gathered} \text { 结温 } \\ \operatorname{TJ}\left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	参数值			单位
				最小	典型	最大	
$\mathrm{IF}(\mathrm{AV})$	正向平均电流	180° 正弦半波， 50 HZ 单面散热， $\mathrm{TC}=100^{\circ} \mathrm{C}$	150		95	100	A
IF （RMS）	方均根电流		150			141	A
VRrM	反向重复峰值电压	VRRM $\mathrm{tp}=10 \mathrm{~ms}$ VRSM $=$ VRRM +200 V	150		1600		V
IRRM	反向重复峰值电流	VRM $=$ VRRM	150			5	mA
IFSM	正向不重复浪涌电流	10 ms 底宽，正弦半波	150			2.3	KA
$\mathrm{I}^{2} \mathrm{t}$	浪涌电流平方时间积	$\mathrm{VR}=0.6 \mathrm{VRRM}$	150			26.9	$\mathrm{A}^{2 \mathrm{~S} *} 10^{3}$
Vfo	门槛电压					0.80	V
rF	斜率电阻					2.80	$\mathrm{m} \Omega$
VFM	正向峰值电压	$\mathrm{IFM}=285 \mathrm{~A}$	25			1.18	V
Rth（j－c）	热阻抗（结至壳）	180° 正弦波，单面散热				0.28	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Rth（c－h）	热阻抗（壳至散）	180° 正弦波，单面散热				0.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Viso	绝缘电压	$50 \mathrm{~Hz}, \mathrm{R} . \mathrm{M} . \mathrm{S}, \mathrm{t}=1 \mathrm{~min}$ ，Iiso： 1 mA （max）			3000		V
FM	安装扭矩（M5）				3		$\mathrm{N}-\mathrm{m}$
	安装扭矩（M6）				4		$\mathrm{N}-\mathrm{m}$
Tstq	储存温度			－40		125	${ }^{\circ} \mathrm{C}$
Wt	质量						g
Outline	外 形	$92 \times 25 \mathrm{~mm}$					

Fig． 1 正向伏安特性曲线

Fig． 3 最大正向功耗与平均电流关系曲线

Fig． 5 最大正向功耗与平均电流关系曲线

Fig． 2 瞬态热阻抗曲线

Fig． 4 管壳温度与正向平均电流关系曲线

Fig． 6 管壳温度与正向平均电流关系曲线

Fig． 7 通态浪涌电流与周波数的关系曲线
$1^{2} \mathrm{t}$ Vs．Time

Fig． $8 I^{2} t$ 特性曲线

外形图：

线路图：

MDC

